Energiespeicherung führt zu einer Vergrößerung der Lücke bei Lithiumbatterien
Gleichzeitig entsteht der Sauerstoff durch die Zersetzung des positiven Elektrodenmaterials in der versiegelten Lithium-Ionen-Batterie aufgrund der fehlenden Rekombination Wenn es zu einer Reaktion (z. B. der Bildung von H2O) kommt und sich das durch die Zersetzung des Elektrolyten entstehende brennbare Gas ansammelt, sind die Folgen unvorstellbar.
Wie entwickelt sich die Lithium-Ionen-Akku-Speicherung?
Bei der Lithium-Ionen-Akku-Speicherung sind in der Tabelle sowohl die aktuellen Werte von Fahrzeugen aus dem Jahr 2020 als auch prognostizierte Werte für Fahrzeuge in zehn Jahren angegeben, denn die Technologie entwickelt sich derzeit mit hohem Tempo weiter. 1.
Wie kann man die Leistung und Sicherheit von Lithium-Ionen-Batterien verbessern?
Die Entwicklung von neuartigen Elektrolyten und Additiven ist für die Steigerung der Leistung und Sicherheit von Lithium-Ionen-Batterien unerlässlich. Durch die Optimierung dieser Komponenten wollen wir die Energiedichte, die Zyklenstabilität und die Gesamteffizienz für verschiedene Anwendungen verbessern.
Wie hoch ist die Energiedichte einer Lithium-Ionen-Batterie?
Die orangen Flächen sind ein Ausblick auf die nächsten fünf bis zehn Jahre der erwarteten Entwicklung. Die aktuell leistungsfähigsten fahrzeugtauglichen Lithium-Ionen-Batteriezellen erreichen rund 250 Wh/kg gravimetrische Energiedichte und 700 Wh/l volumetrische Energiedichte.
Wie ändert sich die Leerlaufspannung von Lithium-Ionen-Batterien?
Auch in Lithium-Ionen-Batterien setzt sich die Klemmenspannung aus einer Leerlaufspannung und einem dynamischen Anteil zusammen: Sind die Klemmen der Batterie offen, liegt an den Klemmen die Leerlaufspannung U0 (t) an. Die Leerlaufspannung von Lithium-Ionen-Batterien verändert sich mit dem Ladezustand.
Wie hoch ist die Energiedichte von Lithium und Schwefel?
Die Reaktion von Lithium und Schwefel erfolgt jedoch über einen vielfachen Elektronentransfermechanismus, woraus sich eine höhere Energiedichte ergibt. Die theoretischen Werte von rund 2.500 Wh/kg und 2.800 Wh/l werden in den bisher gebauten Prototypen allerdings bei Weitem nicht erreicht.
Warum ist Lithium-Ionen so gefährlich?
Der Grund dafür ist die relative langsame Einlagerungsrate der Lithium-Ionen in das Graphit. Typische Laderaten sind 1 C bis 2 C, typische Entladeraten bis 10 C. Geringe Spuren von Wasser und Sauerstoff sind dauerhaft schädigend für die Zelle, daher bestehen hohe Anforderungen an die Dichtheit.