Kapazitive und induktive Energiespeicherprinzipien
In der modernen Elektronik spielen kapazitive Stromversorgungen eine entscheidende Rolle. Diese Art der Stromversorgung nutzt Kondensatoren als zentrale
Was ist kapazitive und induktive Beeinflussung?
Durch die kapazitive und induktive Beeinflussung können Probleme im Betrieb von elektrischen Netzen auftreten. Daher ist eine Beachtung der Beeinflussung von parallelgeführten Leitungssystemen notwendig. Speziell das erdschlusskompensierte Netz kann dafür als Beispiel angesehen werden.
Was ist eine kapazitive Energieübertragung?
Allgemein sollte für eine kapazitive Energieübertragung der Abstand zwischen der primärseitigen Quelle und sekundärseitigen Senke bzw. Last sehr klein sein. Die Kapazität des Übertragungspfades verdoppelt sich mit jeder Halbierung des Abstandes zwischen beiden Seiten.
Was ist ein elektrochemischer Energiespeicher?
sind elektrochemische Energiespeicher, in denen die Zellreaktion kontinuierlich ablaufen kann, beispielsweise Brennstoffzellen und Redox-Flow-Batterien. Elektrostatische und induktive Speicher nutzen die Energie elektrischer oder magnetischer Felder zur Speicherung.
Wie wird die gespeicherte Energie umgekehrt?
Der Prozess kann zur Entnahme der gespeicherten Energie umgekehrt werden, dabei wird oft statt der Pumpe eine weitere Turbine zur Wandlung der mechanischen in elektrische Energie genutzt. Bei Speicherung mit Druckluft wird Luft komprimiert und in unterirdischen Kavernen gespeichert.
Wie kann man Induktivitäten in der Elektrotechnik speichern?
Man kann sie tatsächlich ohne einen Wandlungsvorgang in elektrischen und magnetischen Feldern von Spulen und Kondensatoren speichern. Dies geschieht mit Spulen (Induktivitäten) in der Elektrotechnik seit Jahrzehnten in größtem Umfang. Allerdings nur für sehr kurze Zeit und nur für kleine Energiemengen.
Was sind die wesentlichen Kenngrößen der Energiespeicher?
Die wesentlichen Kenngrößen der Energiespeicher sind ihre Spannungslage und der Energieinhalt. Die Spannungslage ergibt sich aus der Differenz der Elektrodenpotenziale und somit aus der Art der eingesetzten Elektroden. Je nach betrachtetem System werden Spannungsgrenzen für den Lade- und Entladeprozess vorgegeben.