Rotor-Energiespeicherdichte
Energiespeicherdichte im Temperaturbereich des Phasenwechsels und die Wärme/Kälte-Übertragung findet bei konstanter Temperatur statt. Auch hier ist Wasser in Form eines Eisspeichers ein bekanntes Anwendungsbeispiel. Bei 0 °C Phasenwechseltem-peratur ist eine theoretisch 12-mal höhere Speicher-kapazität möglich im Vergleich zu einem sensiblen
How can rotor structure improve energy storage density?
The rotor structure with smaller mass compared with the structure with equal thickness can be obtained by variable thickness design of the rotor with fixed moment of inertia and radius, thus improving the energy storage density of the system.
What size rotor is used in a flywheel energy storage system?
The shown unit features a rotor with a full-size 400 mm outer diameter but axial height scaled to 24% of the full-scale design with 1.0 kWh nominal capacity. Figure 1. Cutaway schematic of a flywheel energy storage system for experimental research. Inset shows the actual device [ 16 ].
What is the relationship between rotor geometry and energy density?
For these rotors, the relationship between material properties, geometry and energy density can be expressed by using a weighed-average approach. One of the primary limits to flywheel design is the tensile strength of the rotor. Generally speaking, the stronger the disc, the faster it may be spun, and the more energy the system can store.
What is the kinetic energy of a rotor?
The kinetic energy of a rotor, as a rotating body, is defined as: where is the total kinetic energy of the rotor, is the total moment of inertia for the rotor, ω is the angular velocity in units rad/s, and N is the number of rims such that n = 1, 2, N.
What are energy storage Flywheel rotors made of?
(Picture right: Luke A. Bisby) Table 7.5 gives an overview of energy storage flywheel rotors made of steel. It should be noted that almost all historical concepts used a solid, isotropic rotor, and the achieved specific energies are significantly lower than those of composite rotors. Some examples are shown in Figs. 7.16 and 7.17.
What affects the energy storage density of a flywheel rotor?
The energy storage density is affected by the specific strength of the flywheel rotor (the ratio of material strength to density σ / ρ). The allowable stress and density are both related to the material used in the flywheel.